cbd tinctures and extracts

Cbd tinctures and extracts

Thanks to relatively small doses, you can administer CBD tincture in many different ways. You can easily add it to drinks like coffee and tea. If you are looking to take your CBD with food, mix a tincture into a meal like soup or pasta.

Many first time consumers of CBD products are intimidated by all the new terms and don’t know where to start. This article will answer one of the most popular questions: what is the difference between a CBD tincture and a CBD concentrate?

CBD Concentrate

Video: CBD Tincture by nu-x®

Farm Bill 2018 declassified hemp as a controlled substance. As a result, it is now legal to farm, process, sell, and market hemp products. The DEA defines hemp as a cannabis plant that contains no more than 0.3 percent of THC concentration – otherwise, it’s a “marijuana” cannabis plant.

CBD Tincture

The main difference between CBD Tinctures and CBD Concentrate is how much CBD is in each mL of liquid. nu-x® CBD Concentrate is available at 3,000mg of CBD per 30 mL bottle which is more CBD per mL than the nu-x® CBD Tincture, which is available with 1,000mg of CBD per 30mL bottle.

Cbd tinctures and extracts

Special thanks to Jose Maria Prieto (School of Pharmacy, London) for the scientific and technical support as well as Elizabeth Williamson (University Reading), Keith Helliwell (Ransom, Hitchin, UK), Michael Heinrich, and Andrew Constanti for the possibility to do this work and use the facilities at the School of Pharmacy, London, the organizational framework of the European research project (COOP-CT-2004-512696) and funding by Ransom. The work was carried out between January 2008 and September 2009 with initial results included in my Ph.D. thesis (02/2009). Essential for this work was the isolation and generous provision of cannflavin A and B by the group of Giovanni Appendino (Novara, IT).

If the starting material consists strictly of female flowering tops, traditional tinctures using a minimum of 60% EtOH had a cannabinoid content > 6 mg/mL with THCtot representing 70%–95% of the detected cannabinoids. The ratio to the main co-cannabinoids (CBGtot) to other cannabinoids, and to flavonoids was around 10:1, respectively. Therefore, any traditional use may be primarily linked to the presence of THCA, THC, and eventually their degradation compounds including CBN. This predominance of THCtot is diminished by higher leaf portions in the drug, more polar extraction (e.g., 20% or 40% EtOH) as well as the use of ‘old’ drugs and tinctures. Cannabinoid and phenolic co-constituents may then influence overall effects: in a 40% leaf tincture the CANtot/TPC ratio was only 0.2; in a 15-month-old 60% flower tincture, CBGtot was half as concentrated as THCtot representing more than 20% of all cannabinoids. Overall, cannabinoids and cannflavins were best extracted with 60%–90% EtOH from flos; other phenolics with 60% EtOH were from folium. Due to comparable polarity, cannflavins remained in their natural subordinated proportion versus cannabinoids (maximum around 1:50 in 60% EtOH tinctures from the flowers). Cannflavins were relatively stable in tinctures, although after 15 months additional flavonoid peaks appeared in line with observations from the reference substances as described under “Experimental”.

The following abbreviations are used in this manuscript:

In this study, pasteurization of tinctures at 70 °C for two hours or heating at 80 °C for 20 min caused up to a 20% reduction in CANtot or THCtot values, but changes were mostly below 10%. Heating had no effect on decarboxylation and changed only moderately overall tincture patterns. These qualitative and quantitative changes may be tolerable if treatments with increased temperature are necessary for production purposes. Together with the 3 months of comparison between shelf vs. fridge, this is in line with early reports where primarily light more than temperature (below 65 °C) and exposure to oxygen were found as critical factors [35,36].

Acknowledgments

This study provides a data set to estimate variations in traditional cannabis tincture quality and shows the determination via conventional HPLC/DAD. Alongside solvent polarity and tincture storage conditions, the age and quality of the original drug determines qualitative and quantitative tincture profiles. While the quality assurance in the herbal drug production has meanwhile reached industrial level [37], this systematic study shows the additional challenges at the drug preparation level for liquid extracts. Specifications of tinctures should include information on the original drug with distinction between Cannabis folium and Cannabis flos, with limitations of the leaf and stalk percentage in the latter and the flower percentage in the former.

Tincture aliquots stored in amber glass bottles either at 4 °C (fridge/dark) or 20 °C (moderate light exposure) were re-analysed after 3 months ( Figure 1 , Figure 2 and Figure 4 ). In F40 there was a 20% decrease of CANtot at room temperature (RT) and 10% under cool conditions. Moderate losses in CANtot were also visible in F60 and F90 (at RT 7.2 to 6.2 mg/mL and 8.7 to 7.8 mg/mL, respectively) and the decarboxylation was accelerated (at RT CANA/CAN-ratio: 2.20 to 0.39 and 2.78 to 0.41, respectively). While the cannabinoid profile showed only minimally increased CBN levels, the conversion of Δ9-tetrahydrocannabinolic acid A (THCA) to THC and CBGA to CBG after 3 months at room temperature/light exposure ( Figure 2 B) was more advanced compared to fridge/dark conditions, even after 15 months ( Figure 2 C,E). Surprisingly, leaf extracts that were absolutely low in CANtot remained relatively unchanged after 3 months at room temperature or even 15 months cool storage, which may signal a certain equilibrium or at least reduced decarboxylation ( Figure 5 ).

Tinctures (ratio between drug and extraction solvent 1:10) were prepared using the 5-month-old starting material: 10 g were macerated with 100 mL of different mixtures EtOH/water (20%, 40%, and 80% v/v) for three days at room temperature in the dark under agitation (aluminum foil-covered 500 mL Erlenmeyer flask on an automated shaker). After filtration, the tinctures were split into various vials, stored at −20 °C, and thawed directly before chemical analysis (abbreviated as: E20, E40, E80).

4.1. Chemical Pattern of Tinctures

The stability of cannabis, its derived products, and THC have been investigated in the 70s and 80s with focus on the forensic analysis. The oxidation of THC to CBN has been described earlier and storage under nitrogen protected from light was recommended [24,25,26]. Soon it was found that CBN was not the only decomposition product and it was found unstable upon light exposure, though less than THC or CBD [27,28]. Controversial reports on the stability of cannabinoids—in particular CBD—in chloroform resulted in recommendations for ethanolic solutions to be stored in the dark [29,30,31]. The prevailing post-harvest decomposition from the original acids to their neutral forms was by then not yet fully considered due to gas chromatographic detection of neutral cannabinoids only. This decarboxylation was found to be strongly accelerated by light, but occurring moderately at −18 °C in the dark [31] which has been recently confirmed at −25 °C for four months [32]. Zoller et al. [33] investigated the stability of THCA standard solutions and favoured neutral solutions at −20 °C to guarantee stability up to three months (in contrast THC > 1 year). Harvey [34] supposed that THCA seems to be more stable in dry plant samples as he still found it in 90-year-old cannabis samples in higher amounts than THC, although CBN and CBNA were the dominant compounds. Also, Turner and Fairbain [18,35] favoured the storage of dry drug samples rather than those in ethanolic solution. A recent study with dry samples (12 months at 25 °C protected from light) seems to support this with moderate changes only [32]. Although results obtained here showed no major qualitative difference between 40% tinctures from 5 and 24-month-old Cannabis flos, there was a substantial quantitative difference. It suggests that absolute THCtot and CANtot are the parameters of concern during both liquid storage and dry storage (to a lesser extent), while CANA/CAN ratios are more affected in ethanolic solutions. Because neither 19 months dry (room temperature) nor 15 months liquid storage (EtOH, fridge) showed a fundamental increase in CBN—usually the standard marker for THC and cannabis degradation—any CBN values higher than 2% of the THC demonstrate more serious stability issues or older age. After 2 years of storage, a higher CBN proportion in the dry leaf than the dry flower drug was noted to an extent not developing over 15 months of liquid storage.

Neutral cannabinoids (CAN); cannabinoid acids (CANA); total cannabinoids (CANtot); cannabidiol (CBD); cannabidiolic acid (CBDA); cannabidiol + cannabidiolic acid (CBDtot); cannabigerol (CBG); cannabigerolic acid (CBGA); cannabigerol + cannabigerolic acid (CBGtot); cannabinol (CBN); cannflavin A (CFL-A); cannflavin B (CFL-B); other cannabinoids (oCAN); Δ9-tetrahydrocannabinol (THC); Δ9-tetrahydrocannabinolic acid A (THCA); Δ9-tetrahydrocannabinol + Δ9-tetrahydrocannabinolic acid A + cannabinol (THCtot); total phenolic content (TPC).