cbd para cancer

Cbd para cancer

Epidemiologic studies examining one association of Cannabis use with head and neck squamous cell carcinomas have also been inconsistent in their findings. A pooled analysis of nine case-control studies from the U.S./Latin American International Head and Neck Cancer Epidemiology (INHANCE) Consortium included information from 1,921 oropharyngeal cases, 356 tongue cases, and 7,639 controls. Compared with those who never smoked Cannabis, Cannabis smokers had an elevated risk of oropharyngeal cancers and a reduced risk of tongue cancer. These study results both reflect the inconsistent effects of cannabinoids on cancer incidence noted in previous studies and suggest that more work needs to be done to understand the potential role of human papillomavirus infection.[13] A systematic review and meta-analysis of nine case-control studies involving 13,931 participants also concluded that there was insufficient evidence to support or refute a positive or negative association between Cannabis smoking and the incidence of head and neck cancers.[14]

A cross-sectional survey of cancer patients seen at the Seattle Cancer Care Alliance was conducted over a 6-week period between 2015 and 2016.[21] In Washington State, Cannabis was legalized for medicinal use in 1998 and for recreational use in 2012. Of the 2,737 possible participants, 936 (34%) completed the anonymous questionnaire. Twenty-four percent of patients considered themselves active Cannabis users. Similar numbers of patients inhaled (70%) or used edibles (70%), with dual use (40%) being common. Non–mutually exclusive reasons for Cannabis use were physical symptoms (75%), neuropsychiatric symptoms (63%), recreational use/enjoyment (35%), and treatment of cancer (26%). The physical symptoms most commonly cited were pain, nausea, and loss of appetite. The majority of patients (74%) stated that they would prefer to obtain information about Cannabis from their cancer team, but less than 15% reported receiving information from their cancer physician or nurse.

Antiemetic Effect

No ongoing clinical trials of Cannabis as a treatment for cancer in humans were identified in a PubMed search. The first published trial of any cannabinoid in patients with cancer was a small pilot study of intratumoral injection of delta-9-THC in patients with recurrent glioblastoma multiforme, which demonstrated no significant clinical benefit.[25,26] A small double-blind exploratory phase IB study was conducted in the United Kingdom that used nabiximols, a 1:1 ratio of THC:CBD in a Cannabis-based medicinal extract oromucosal spray, in conjunction with dose-dense temozolomide in treating patients with recurrent glioblastoma multiforme.[27][Level of evidence: 1iA] Of the 27 patients enrolled, 6 were part of an open-label group and 21 were part of a randomized group (12 treated with nabiximols and 9 treated with placebo). Progression-free survival at 6 months was seen in 33% of patients in both arms of the study. However, 83.3% of the patients who received nabiximols were alive at 1 year compared with 44.4% of the patients who received placebo (P = .042). The investigators cautioned that this early-phase study was not powered for a survival endpoint. Overall survival rates at 2 years continued to favor the nabiximols arm (50%) compared with the placebo arm (22%) (these rates included results for the 6 patients in the open-label group who received nabiximols).[27]

See also  cbd oil chocolate mint

Although cannabinoids are considered by some to be addictive drugs, their addictive potential is considerably lower than that of other prescribed agents or substances of abuse.[2,4] The brain develops a tolerance to cannabinoids.

Cannabis

Added text about a single center, phase II, double-blind study of two ratios of an oral medical Cannabis oil in patients with recurrent or inoperable high-grade glioma (cited Schloss et al. as reference 73).

Cbd para cancer

Surprisingly, so far no study has investigated the effect of CBD on angiogenesis. Our data currently awaiting publication [58] demonstrated that CBD potently inhibited HUVE cells proliferation, migration and invasion through the induction of endothelial cell cytostasis without triggering apoptosis. Interestingly, CBD also affected endothelial cell differentiation into tubular capillaries as well as the outgrowth of capillary-like structures from HUVEC spheroids in vitro. In addition, the anti-angiogenic properties of CBD were demonstrated also in vivo, using a matrigel sponge model. These effects were associated with down-modulation of several molecules associated with angiogenesis, including MMP2, MMP9, uPA, endothelin-1, PDGF-AA and CXCL16.

However, the clinical use of Δ 9 -THC and additional synthetic agonists is often limited by their unwanted psychoactive side effects, and for this reason interest in non-psychoactive phytocannabinoids, such as CBD, has substantially increased in recent years. Interestingly CBD has no psychotropic activity and, although it has very low affinity for both CB1 and CB2 receptors, it has been recently reported to act with unexpectedly high potency in vitro as antagonist of CB1 receptors in the mouse vas deferens [28] and brain [29] tissues. Additionally, CBD displays inverse agonism at human CB2 receptors [29]. Moreover, other putative molecular targets of CBD are TRPV, 5-HT1A, GPR55 and PPARγ receptors (see Figure 2 ). Besides its beneficial effects in the treatment of pain and spasticity and other CNS pathologies, several reports demonstrated that CBD possesses antiproliferative, pro-apoptotic effects and inhibits cancer cell migration, adhesion and invasion.

See also  herbal risings cbd

In 2006 Ligresti et al. [30] demonstrated for the first time that CBD potently and selectively inhibited the growth of different breast tumour cell lines (MCF7, MDA-MB-231), with an IC50 of about 6 µ m , and exhibited significantly lower potency in non-cancer cells. CBD and CBD-rich extracts (containing approximately 70% CBD together with lesser amounts of other cannabinoids) also inhibited the growth of xenografts, obtained by s.c. injection into athymic mice of human MDA-MB-231 cells, and reduced infiltration of lung metastases derived from intrapaw injection of breast carcinoma cells. Among the possible cellular and molecular mechanisms underlying these effects, CBD seemed to involve direct TRPV1 activation and/or CB2 indirect activation (via FAAH), as well as induction of oxidative stress. Later on, McAllister’s group [31] demonstrated that, besides proliferation, CBD also interfered with two other crucial steps of breast cancer cell progression, invasion and metastasization. Among the three different groups of cannabinoid compounds tested (phytocannabinoids with affinity for CB1 and CB2 receptors, phytocannabinoids with no appreciable affinity for CB1 and CB2 receptors and synthetic compounds with affinity for CB1 and CB2 receptors), CBD was shown to be one of the most effective inhibitors of human breast cancer cell proliferation, being equipotent to Δ 9 -THC and CP55940 in inhibiting, respectively, MDA-MB-231 and MDA-MB-436 cell growth, and being the most potent inhibitor of the MDA-MB-231 cell migration. Interestingly, CBD regulated the expression of key genes involved in the control of cell proliferation and invasion through the downregulation of Id-1 expression, an inhibitor of basic helix-loop-helix transcription factors, whose overexpression in breast cancer cells is responsible for proliferation, migration and invasion. Therefore, the ability of CBD to decrease significantly Id-1 expression in breast cancer cells was associated with its efficacy in reducing tumour aggressiveness.

Together, these findings provide a novel mechanism underlying the anti-invasive action of CBD on human lung cancer cells and imply its use as a therapeutic option for the treatment of highly invasive cancers.

See also  cbd columbia mo

Conclusion and future directions

Endogenous ligands for the cannabinoid receptors were discovered soon after their characterization. The two major known endogenous ligands are anandamide (AEA) and 2-AG [3–6]. Both are arachidonic acid derivatives produced from phospholipid precursors through activity-dependent activation of specific phospholipase enzymes [7]. Later on, a number of other eCB ligands have been discovered, including N-arachidonoyldopamine, N-arachidonoylglycerolether and O-arachidonoylethanolamine [8].

In Jurkat cells, CBD exposure resulted in the activation of caspase-8, -9, and -3, the cleavage of poly(ADPribose) polymerase and the decrease in full-length Bid, suggesting a possible cross-talk between the intrinsic and extrinsic apoptotic pathways. Moreover, exposure to CBD led to the loss of mitochondrial membrane potential and subsequent release of cytochrome C. As in other tumour cells, CBD-induced apoptosis required an increase of ROS production. Finally, CBD decreased the levels of phospho-p38 mitogen-activated protein kinase [45], and this effect was blocked by treatment with a CB2-selective antagonist or ROS scavenger. In addition, CBD treatment caused a significant reduction in tumour burden and increased the level of apoptotic tumours in EL-4-bearing mice [45].

Together, the results suggest that CBD, acting through CB2 receptors and ROS production, may represent a novel and highly selective treatment for leukaemia. Moreover, previous evidence indicated that human leukaemias and lymphomas expressed significantly higher levels of CB2 receptors compared with other tumour cell lines, suggesting that tumours of immune origin may be highly sensitive to the CB2-mediated effects of CBD [46].

Table 1

Schematic representation of the signalling pathways associated with CBD effects on glioma

Four years later, the same group [32] demonstrated that the observed effect of CBD on Id-1 expression was mediated by the upregulation of the extracellular signal-regulated kinase phosphorylation (pERK). Indeed, the ERK inhibitor, U0126, partially reverted CBD-induced inhibition of proliferation and invasion as well as its effect on Id-1 expression. Besides ERK upregulation, also the production of reactive oxygen species (ROS) was shown to mediate CBD-induced effects on cell proliferation and Id-1 expression, since the use of a ROS scavenger (tocopherol) reversed the aforementioned CBD effects. Moreover, these authors demonstrated that CBD was effective in reducing the primary tumour mass and the size and number of metastatic foci in vivo.